Show commands: SageMath
Rank
The elliptic curves in class 6825d have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6825d do not have complex multiplication.Modular form 6825.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 6825d
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6825.f4 | 6825d1 | \([1, 1, 1, -713, 1406]\) | \(2565726409/1404585\) | \(21946640625\) | \([4]\) | \(6144\) | \(0.67505\) | \(\Gamma_0(N)\)-optimal |
| 6825.f2 | 6825d2 | \([1, 1, 1, -6838, -219094]\) | \(2263054145689/16769025\) | \(262016015625\) | \([2, 2]\) | \(12288\) | \(1.0216\) | |
| 6825.f1 | 6825d3 | \([1, 1, 1, -109213, -13937344]\) | \(9219915604149769/511875\) | \(7998046875\) | \([2]\) | \(24576\) | \(1.3682\) | |
| 6825.f3 | 6825d4 | \([1, 1, 1, -2463, -490344]\) | \(-105756712489/6558605235\) | \(-102478206796875\) | \([2]\) | \(24576\) | \(1.3682\) |