Properties

Label 6825d
Number of curves $4$
Conductor $6825$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6825d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6825d do not have complex multiplication.

Modular form 6825.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} + q^{6} + q^{7} + 3 q^{8} + q^{9} + 4 q^{11} + q^{12} + q^{13} - q^{14} - q^{16} - 6 q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6825d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6825.f4 6825d1 \([1, 1, 1, -713, 1406]\) \(2565726409/1404585\) \(21946640625\) \([4]\) \(6144\) \(0.67505\) \(\Gamma_0(N)\)-optimal
6825.f2 6825d2 \([1, 1, 1, -6838, -219094]\) \(2263054145689/16769025\) \(262016015625\) \([2, 2]\) \(12288\) \(1.0216\)  
6825.f1 6825d3 \([1, 1, 1, -109213, -13937344]\) \(9219915604149769/511875\) \(7998046875\) \([2]\) \(24576\) \(1.3682\)  
6825.f3 6825d4 \([1, 1, 1, -2463, -490344]\) \(-105756712489/6558605235\) \(-102478206796875\) \([2]\) \(24576\) \(1.3682\)