Show commands: SageMath
Rank
The elliptic curves in class 6800.c have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 6800.c do not have complex multiplication.Modular form 6800.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 6800.c
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6800.c1 | 6800n1 | \([0, 1, 0, -3008, -56012]\) | \(47045881/6800\) | \(435200000000\) | \([2]\) | \(9216\) | \(0.95858\) | \(\Gamma_0(N)\)-optimal |
6800.c2 | 6800n2 | \([0, 1, 0, 4992, -296012]\) | \(214921799/722500\) | \(-46240000000000\) | \([2]\) | \(18432\) | \(1.3051\) |