Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-844\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-844z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-54000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(10, 12)$ | $1.2167732609229170786542795935$ | $\infty$ |
Integral points
\( \left(10, 12\right) \), \( \left(10, -13\right) \), \( \left(124, 1380\right) \), \( \left(124, -1381\right) \)
Invariants
| Conductor: | $N$ | = | \( 675 \) | = | $3^{3} \cdot 5^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-307546875$ | = | $-1 \cdot 3^{9} \cdot 5^{6} $ |
|
| j-invariant: | $j$ | = | \( 0 \) | = | $0$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[(1+\sqrt{-3})/2]\) (potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.30756074429009454085694439845$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3211174284280379149898691959$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.14428990242478$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.2167732609229170786542795935$ |
|
| Real period: | $\Omega$ | ≈ | $0.79006486746470842065100100801$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $1.9226596102513311187457582056 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.922659610 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.790065 \cdot 1.216773 \cdot 2}{1^2} \\ & \approx 1.922659610\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 144 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $1$ | $IV^{*}$ | additive | 1 | 3 | 9 | 0 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3Cs | 27.972.55.16 |
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | additive | $2$ | \( 5 \) |
| $5$ | additive | $14$ | \( 27 = 3^{3} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 675a
consists of 4 curves linked by isogenies of
degrees dividing 27.
Twists
The minimal quadratic twist of this elliptic curve is 27a3, its twist by $-15$.
The minimal sextic twist of this elliptic curve is 27.a4, its sextic twist by $-3375$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/3\Z\) | 2.2.5.1-729.1-b4 |
| $2$ | \(\Q(\sqrt{-15}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.108.1 | \(\Z/2\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $6$ | 6.0.34992.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.2460375.1 | \(\Z/9\Z\) | not in database |
| $6$ | 6.2.1458000.2 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.4374000.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | 12.0.6053445140625.1 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
| $12$ | deg 12 | \(\Z/7\Z\) | not in database |
| $12$ | 12.0.19131876000000.1 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.2638382261080062673828125.2 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.4941387170271576000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | add | add | ord | ss | ord | ss | ord | ss | ss | ord | ord | ss | ord | ss |
| $\lambda$-invariant(s) | 2,7 | - | - | 3 | 3,1 | 1 | 1,1 | 1 | 1,1 | 1,1 | 1 | 1 | 1,1 | 1 | 1,1 |
| $\mu$-invariant(s) | 0,0 | - | - | 0 | 0,0 | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.