sage:E = EllipticCurve("j1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 67335j1 has
rank \(1\).
| |
| Bad L-factors: |
| Prime |
L-Factor |
| \(3\) | \(1 - T\) |
| \(5\) | \(1 - T\) |
| \(67\) | \(1\) |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
| \(2\) |
\( 1 - 2 T + 2 T^{2}\) |
1.2.ac
|
| \(7\) |
\( 1 + 7 T^{2}\) |
1.7.a
|
| \(11\) |
\( 1 - 6 T + 11 T^{2}\) |
1.11.ag
|
| \(13\) |
\( 1 - 5 T + 13 T^{2}\) |
1.13.af
|
| \(17\) |
\( 1 + 4 T + 17 T^{2}\) |
1.17.e
|
| \(19\) |
\( 1 - 4 T + 19 T^{2}\) |
1.19.ae
|
| \(23\) |
\( 1 + 4 T + 23 T^{2}\) |
1.23.e
|
| \(29\) |
\( 1 - 10 T + 29 T^{2}\) |
1.29.ak
|
| $\cdots$ | $\cdots$ | $\cdots$ |
|
| |
| See L-function page for more information |
The elliptic curves in class 67335j do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 67335j
sage:E.isogeny_class().curves