Properties

Label 6720.ck
Number of curves $4$
Conductor $6720$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6720.ck have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6720.ck do not have complex multiplication.

Modular form 6720.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{7} + q^{9} - 6 q^{13} + q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 6720.ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6720.ck1 6720cl3 \([0, 1, 0, -810465, -272909025]\) \(898353183174324196/29899176238575\) \(1959472413971251200\) \([2]\) \(122880\) \(2.2828\)  
6720.ck2 6720cl2 \([0, 1, 0, -124465, 10957775]\) \(13015144447800784/4341909875625\) \(71137851402240000\) \([2, 2]\) \(61440\) \(1.9362\)  
6720.ck3 6720cl1 \([0, 1, 0, -111965, 14380275]\) \(151591373397612544/32558203125\) \(33339600000000\) \([2]\) \(30720\) \(1.5897\) \(\Gamma_0(N)\)-optimal
6720.ck4 6720cl4 \([0, 1, 0, 361535, 75984575]\) \(79743193254623804/84085819746075\) \(-5510648282878771200\) \([2]\) \(122880\) \(2.2828\)