Properties

Label 672.f
Number of curves $4$
Conductor $672$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 672.f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 672.f do not have complex multiplication.

Modular form 672.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - q^{7} + q^{9} - 4 q^{11} - 6 q^{13} - 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 672.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
672.f1 672f2 \([0, 1, 0, -224, -1368]\) \(2438569736/21\) \(10752\) \([2]\) \(128\) \(-0.058633\)  
672.f2 672f3 \([0, 1, 0, -49, 95]\) \(3241792/567\) \(2322432\) \([4]\) \(128\) \(-0.058633\)  
672.f3 672f1 \([0, 1, 0, -14, -24]\) \(5088448/441\) \(28224\) \([2, 2]\) \(64\) \(-0.40521\) \(\Gamma_0(N)\)-optimal
672.f4 672f4 \([0, 1, 0, 16, -84]\) \(830584/7203\) \(-3687936\) \([2]\) \(128\) \(-0.058633\)