Properties

Label 67081.d
Number of curves $2$
Conductor $67081$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 67081.d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1\)
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 67081.d do not have complex multiplication.

Modular form 67081.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 4 q^{5} + 3 q^{8} - 3 q^{9} - 4 q^{10} + 4 q^{11} + 4 q^{13} - q^{16} + 3 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 67081.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
67081.d1 67081e2 \([1, -1, 1, -12757968, 17455894334]\) \(760798453689/4353013\) \(1313979375927897474733\) \([2]\) \(4727808\) \(2.8937\)  
67081.d2 67081e1 \([1, -1, 1, -347983, 578314734]\) \(-15438249/469567\) \(-141741215479102643047\) \([2]\) \(2363904\) \(2.5471\) \(\Gamma_0(N)\)-optimal