Show commands: SageMath
Rank
The elliptic curves in class 663c have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 663c do not have complex multiplication.Modular form 663.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 663c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 663.b2 | 663c1 | \([1, 0, 0, -33, -72]\) | \(3981876625/232713\) | \(232713\) | \([2]\) | \(64\) | \(-0.21668\) | \(\Gamma_0(N)\)-optimal |
| 663.b1 | 663c2 | \([1, 0, 0, -98, 279]\) | \(104154702625/24649677\) | \(24649677\) | \([2]\) | \(128\) | \(0.12990\) |