Properties

Label 663.2.a.c
Level $663$
Weight $2$
Character orbit 663.a
Self dual yes
Analytic conductor $5.294$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 663 = 3 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 663.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(5.29408165401\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} - q^{4} - 4q^{5} - q^{6} + 2q^{7} - 3q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} - q^{4} - 4q^{5} - q^{6} + 2q^{7} - 3q^{8} + q^{9} - 4q^{10} + 6q^{11} + q^{12} - q^{13} + 2q^{14} + 4q^{15} - q^{16} + q^{17} + q^{18} + 4q^{19} + 4q^{20} - 2q^{21} + 6q^{22} + 3q^{24} + 11q^{25} - q^{26} - q^{27} - 2q^{28} - 6q^{29} + 4q^{30} + 10q^{31} + 5q^{32} - 6q^{33} + q^{34} - 8q^{35} - q^{36} - 4q^{37} + 4q^{38} + q^{39} + 12q^{40} - 2q^{42} + 12q^{43} - 6q^{44} - 4q^{45} + 8q^{47} + q^{48} - 3q^{49} + 11q^{50} - q^{51} + q^{52} + 2q^{53} - q^{54} - 24q^{55} - 6q^{56} - 4q^{57} - 6q^{58} - 8q^{59} - 4q^{60} - 10q^{61} + 10q^{62} + 2q^{63} + 7q^{64} + 4q^{65} - 6q^{66} + 12q^{67} - q^{68} - 8q^{70} + 2q^{71} - 3q^{72} + 4q^{73} - 4q^{74} - 11q^{75} - 4q^{76} + 12q^{77} + q^{78} - 4q^{79} + 4q^{80} + q^{81} - 12q^{83} + 2q^{84} - 4q^{85} + 12q^{86} + 6q^{87} - 18q^{88} - 6q^{89} - 4q^{90} - 2q^{91} - 10q^{93} + 8q^{94} - 16q^{95} - 5q^{96} + 8q^{97} - 3q^{98} + 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 −1.00000 −4.00000 −1.00000 2.00000 −3.00000 1.00000 −4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(13\) \(1\)
\(17\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 663.2.a.c 1
3.b odd 2 1 1989.2.a.b 1
13.b even 2 1 8619.2.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
663.2.a.c 1 1.a even 1 1 trivial
1989.2.a.b 1 3.b odd 2 1
8619.2.a.e 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(663))\):

\( T_{2} - 1 \)
\( T_{5} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( 1 + T \)
$5$ \( 4 + T \)
$7$ \( -2 + T \)
$11$ \( -6 + T \)
$13$ \( 1 + T \)
$17$ \( -1 + T \)
$19$ \( -4 + T \)
$23$ \( T \)
$29$ \( 6 + T \)
$31$ \( -10 + T \)
$37$ \( 4 + T \)
$41$ \( T \)
$43$ \( -12 + T \)
$47$ \( -8 + T \)
$53$ \( -2 + T \)
$59$ \( 8 + T \)
$61$ \( 10 + T \)
$67$ \( -12 + T \)
$71$ \( -2 + T \)
$73$ \( -4 + T \)
$79$ \( 4 + T \)
$83$ \( 12 + T \)
$89$ \( 6 + T \)
$97$ \( -8 + T \)
show more
show less