Show commands: SageMath
Rank
The elliptic curves in class 66240dq have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 66240dq do not have complex multiplication.Modular form 66240.2.a.dq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 66240dq
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
66240.ck2 | 66240dq1 | \([0, 0, 0, -23328, 1208952]\) | \(69657034752/8984375\) | \(181083600000000\) | \([2]\) | \(184320\) | \(1.4645\) | \(\Gamma_0(N)\)-optimal |
66240.ck1 | 66240dq2 | \([0, 0, 0, -360828, 83423952]\) | \(16110654114672/330625\) | \(106622023680000\) | \([2]\) | \(368640\) | \(1.8111\) |