Properties

Label 66066.cq
Number of curves $4$
Conductor $66066$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 66066.cq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66066.cq do not have complex multiplication.

Modular form 66066.2.a.cq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - q^{7} + q^{8} + q^{9} + q^{12} - q^{13} - q^{14} + q^{16} + 6 q^{17} + q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 66066.cq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66066.cq1 66066cj4 \([1, 0, 0, -6987813, 7102721385]\) \(21300579951997515625/22665575244312\) \(40153449145388611032\) \([2]\) \(3317760\) \(2.6781\)  
66066.cq2 66066cj3 \([1, 0, 0, -545773, 51264401]\) \(10148545224987625/5231008630848\) \(9267050881073713728\) \([2]\) \(1658880\) \(2.3315\)  
66066.cq3 66066cj2 \([1, 0, 0, -317688, -58698342]\) \(2001566936265625/318878437878\) \(564912604285587558\) \([2]\) \(1105920\) \(2.1288\)  
66066.cq4 66066cj1 \([1, 0, 0, -304378, -64658560]\) \(1760384222493625/58270212\) \(103229235040932\) \([2]\) \(552960\) \(1.7822\) \(\Gamma_0(N)\)-optimal