Properties

Label 65520bw
Number of curves $4$
Conductor $65520$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 65520bw have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 65520bw do not have complex multiplication.

Modular form 65520.2.a.bw

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 6 q^{11} + q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 65520bw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
65520.b4 65520bw1 \([0, 0, 0, -140643, -20284318]\) \(2781982314427707/2703013040\) \(298931618119680\) \([2]\) \(331776\) \(1.6984\) \(\Gamma_0(N)\)-optimal
65520.b2 65520bw2 \([0, 0, 0, -2249763, -1298832862]\) \(11387025941627437947/10765300\) \(1190556057600\) \([2]\) \(663552\) \(2.0450\)  
65520.b3 65520bw3 \([0, 0, 0, -505683, 116697618]\) \(177381177331203/29679104000\) \(2392775901315072000\) \([2]\) \(995328\) \(2.2477\)  
65520.b1 65520bw4 \([0, 0, 0, -2302803, -1234377198]\) \(16751080718799363/1529437000000\) \(123305609097216000000\) \([2]\) \(1990656\) \(2.5943\)