Properties

Label 64350db
Number of curves $1$
Conductor $64350$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("db1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 64350db1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 64350db do not have complex multiplication.

Modular form 64350.2.a.db

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 3 q^{7} + q^{8} + q^{11} - q^{13} - 3 q^{14} + q^{16} + 8 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 64350db

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64350.db1 64350db1 \([1, -1, 1, -5, 51997]\) \(-27/2768480\) \(-1167952500000\) \([]\) \(115200\) \(0.99441\) \(\Gamma_0(N)\)-optimal