Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+249558x+1383449716\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+249558xz^2+1383449716z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+3992925x+88544774750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-151, 36713)$ | $4.9153557112112451091538648111$ | $\infty$ |
Integral points
\( \left(-151, 36713\right) \), \( \left(-151, -36562\right) \)
Invariants
Conductor: | $N$ | = | \( 64350 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-827888385392640000000$ | = | $-1 \cdot 2^{27} \cdot 3^{3} \cdot 5^{7} \cdot 11^{3} \cdot 13^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{4074304020054813}{1962402098708480} \) | = | $2^{-27} \cdot 3^{3} \cdot 5^{-1} \cdot 11^{-3} \cdot 13^{-3} \cdot 53239^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6928663870818646053801338436$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6134943586977869952309428678$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0406662835130327$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.023343978860904$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.9153557112112451091538648111$ |
|
Real period: | $\Omega$ | ≈ | $0.12341040239002361096029254142$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2^{2}\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.8528482096854435958569524332 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.852848210 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.123410 \cdot 4.915356 \cdot 8}{1^2} \\ & \approx 4.852848210\end{aligned}$$
Modular invariants
Modular form 64350.2.a.bq
For more coefficients, see the Downloads section to the right.
Modular degree: | 2612736 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{27}$ | nonsplit multiplicative | 1 | 1 | 27 | 27 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
$11$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 7801 & 6 \\ 6243 & 19 \end{array}\right),\left(\begin{array}{rr} 8581 & 6 \\ 8583 & 19 \end{array}\right),\left(\begin{array}{rr} 17155 & 6 \\ 17154 & 7 \end{array}\right),\left(\begin{array}{rr} 16446 & 721 \\ 11443 & 12174 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6863 & 17154 \\ 3429 & 17141 \end{array}\right),\left(\begin{array}{rr} 2641 & 6 \\ 7923 & 19 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 12871 & 6 \\ 4293 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$765176315904000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 10725 = 3 \cdot 5^{2} \cdot 11 \cdot 13 \) |
$3$ | additive | $6$ | \( 25 = 5^{2} \) |
$5$ | additive | $18$ | \( 2574 = 2 \cdot 3^{2} \cdot 11 \cdot 13 \) |
$11$ | nonsplit multiplicative | $12$ | \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 64350.bq
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 12870.u2, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.17160.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.5053029696000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.6834375.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.2.1472328000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.46708681640625.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.5855553126837295162658330284423828125.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.715570718790985193626776000000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | add | ord | nonsplit | nonsplit | ss | ord | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 10 | - | - | 1 | 1 | 1 | 1,1 | 1 | 1 | 3,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.