Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
12870.u2 |
12870i2 |
12870.u |
12870i |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{27} \cdot 3^{9} \cdot 5 \cdot 11^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$326592$ |
$2.437454$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.55383$ |
$[1, -1, 0, 89841, -298861075]$ |
\(y^2+xy=x^3-x^2+89841x-298861075\) |
3.8.0-3.a.1.1, 17160.16.0.? |
$[ ]$ |
12870.bg2 |
12870bd1 |
12870.bg |
12870bd |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{27} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 13^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$17160$ |
$16$ |
$0$ |
$1.302215838$ |
$1$ |
|
$12$ |
$108864$ |
$1.888147$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$4.85723$ |
$[1, -1, 1, 9982, 11065601]$ |
\(y^2+xy+y=x^3-x^2+9982x+11065601\) |
3.8.0-3.a.1.2, 17160.16.0.? |
$[(-207, 415)]$ |
64350.bq2 |
64350a1 |
64350.bq |
64350a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{27} \cdot 3^{3} \cdot 5^{7} \cdot 11^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$4.915355711$ |
$1$ |
|
$2$ |
$2612736$ |
$2.692867$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.02334$ |
$[1, -1, 0, 249558, 1383449716]$ |
\(y^2+xy=x^3-x^2+249558x+1383449716\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 3432.8.0.?, 17160.16.0.? |
$[(-151, 36713)]$ |
64350.ef2 |
64350cw2 |
64350.ef |
64350cw |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{27} \cdot 3^{9} \cdot 5^{7} \cdot 11^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$0.755618561$ |
$1$ |
|
$4$ |
$7838208$ |
$3.242172$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.61869$ |
$[1, -1, 1, 2246020, -37355388353]$ |
\(y^2+xy+y=x^3-x^2+2246020x-37355388353\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 3432.8.0.?, 17160.16.0.? |
$[(15349, 1893125)]$ |
102960.bt2 |
102960cg1 |
102960.bt |
102960cg |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{39} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2612736$ |
$2.581295$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$4.70279$ |
$[0, 0, 0, 159717, -708358198]$ |
\(y^2=x^3+159717x-708358198\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 17160.16.0.? |
$[ ]$ |
102960.dv2 |
102960ck2 |
102960.dv |
102960ck |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{39} \cdot 3^{9} \cdot 5 \cdot 11^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7838208$ |
$3.130600$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.27389$ |
$[0, 0, 0, 1437453, 19125671346]$ |
\(y^2=x^3+1437453x+19125671346\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 17160.16.0.? |
$[ ]$ |
141570.s2 |
141570ey1 |
141570.s |
141570ey |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) |
\( - 2^{27} \cdot 3^{3} \cdot 5 \cdot 11^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13063680$ |
$3.087093$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.08827$ |
$[1, -1, 0, 1207860, -14731938864]$ |
\(y^2+xy=x^3-x^2+1207860x-14731938864\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 1560.8.0.?, 17160.16.0.? |
$[ ]$ |
141570.ek2 |
141570cg2 |
141570.ek |
141570cg |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) |
\( - 2^{27} \cdot 3^{9} \cdot 5 \cdot 11^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$39191040$ |
$3.636402$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.64403$ |
$[1, -1, 1, 10870738, 397751478589]$ |
\(y^2+xy+y=x^3-x^2+10870738x+397751478589\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 1560.8.0.?, 17160.16.0.? |
$[ ]$ |
167310.cg2 |
167310fb1 |
167310.cg |
167310fb |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2} \) |
\( - 2^{27} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$6.182950093$ |
$1$ |
|
$0$ |
$18289152$ |
$3.170624$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.10093$ |
$[1, -1, 0, 1687011, 24316187013]$ |
\(y^2+xy=x^3-x^2+1687011x+24316187013\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 1320.8.0.?, 17160.16.0.? |
$[(45891/2, 9925785/2)]$ |
167310.dq2 |
167310cs2 |
167310.dq |
167310cs |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2} \) |
\( - 2^{27} \cdot 3^{9} \cdot 5 \cdot 11^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$54867456$ |
$3.719929$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.64898$ |
$[1, -1, 1, 15183097, -656552232449]$ |
\(y^2+xy+y=x^3-x^2+15183097x-656552232449\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 1320.8.0.?, 17160.16.0.? |
$[ ]$ |
411840.cp2 |
411840cp2 |
411840.cp |
411840cp |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{45} \cdot 3^{9} \cdot 5 \cdot 11^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$38.10358274$ |
$1$ |
|
$0$ |
$62705664$ |
$3.477173$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.03006$ |
$[0, 0, 0, 5749812, -153005370768]$ |
\(y^2=x^3+5749812x-153005370768\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 8580.8.0.?, 17160.16.0.? |
$[(232907321895470664/5898949, 88367778044459283531753612/5898949)]$ |
411840.ee2 |
411840ee2 |
411840.ee |
411840ee |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{45} \cdot 3^{9} \cdot 5 \cdot 11^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$5.488032448$ |
$1$ |
|
$0$ |
$62705664$ |
$3.477173$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$5.03006$ |
$[0, 0, 0, 5749812, 153005370768]$ |
\(y^2=x^3+5749812x+153005370768\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 4290.8.0.?, 17160.16.0.? |
$[(669106/9, 637272064/9)]$ |
411840.ji2 |
411840ji1 |
411840.ji |
411840ji |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{45} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$2.935942389$ |
$1$ |
|
$0$ |
$20901888$ |
$2.927868$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$4.52020$ |
$[0, 0, 0, 638868, 5666865584]$ |
\(y^2=x^3+638868x+5666865584\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 8580.8.0.?, 17160.16.0.? |
$[(4390/7, 25952256/7)]$ |
411840.li2 |
411840li1 |
411840.li |
411840li |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
\( - 2^{45} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$44.04804152$ |
$1$ |
|
$0$ |
$20901888$ |
$2.927868$ |
$4074304020054813/1962402098708480$ |
$1.04067$ |
$4.52020$ |
$[0, 0, 0, 638868, -5666865584]$ |
\(y^2=x^3+638868x-5666865584\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 4290.8.0.?, 17160.16.0.? |
$[(17712919596731954165/68021843, 72376118452950034723654599873/68021843)]$ |