Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-196225x+32900735\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-196225xz^2+32900735z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-15894252x+24032318544\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(218, 729)$ | $1.5727175003083083913239649719$ | $\infty$ |
| $(-511, 0)$ | $0$ | $2$ |
Integral points
\( \left(-511, 0\right) \), \((218,\pm 729)\), \((293,\pm 804)\)
Invariants
| Conductor: | $N$ | = | \( 64320 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 67$ |
|
| Discriminant: | $\Delta$ | = | $14071069305077760$ | = | $2^{17} \cdot 3^{14} \cdot 5 \cdot 67^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{6374982726455618}{107353739205} \) | = | $2 \cdot 3^{-14} \cdot 5^{-1} \cdot 11^{3} \cdot 17^{3} \cdot 67^{-2} \cdot 787^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8965985106421555736534451976$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.91464000484889971864569969220$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9560396492729272$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.351182045369736$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.5727175003083083913239649719$ |
|
| Real period: | $\Omega$ | ≈ | $0.39677208467595021477711220342$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 56 $ = $ 2\cdot( 2 \cdot 7 )\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.7361456168514765308038966061 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.736145617 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.396772 \cdot 1.572718 \cdot 56}{2^2} \\ & \approx 8.736145617\end{aligned}$$
Modular invariants
Modular form 64320.2.a.cs
For more coefficients, see the Downloads section to the right.
| Modular degree: | 487424 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{7}^{*}$ | additive | -1 | 6 | 17 | 0 |
| $3$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $67$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8040 = 2^{3} \cdot 3 \cdot 5 \cdot 67 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 6434 & 1 \\ 4823 & 0 \end{array}\right),\left(\begin{array}{rr} 5161 & 4 \\ 2282 & 9 \end{array}\right),\left(\begin{array}{rr} 2681 & 4 \\ 5362 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 4019 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3017 & 5026 \\ 5024 & 3015 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 8037 & 4 \\ 8036 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[8040])$ is a degree-$58528046776320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 5 \) |
| $3$ | split multiplicative | $4$ | \( 21440 = 2^{6} \cdot 5 \cdot 67 \) |
| $5$ | split multiplicative | $6$ | \( 12864 = 2^{6} \cdot 3 \cdot 67 \) |
| $7$ | good | $2$ | \( 21440 = 2^{6} \cdot 5 \cdot 67 \) |
| $67$ | split multiplicative | $68$ | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 64320.cs
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 8040.h1, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.1616040.1 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.4178536450560000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 67 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | split | ord | ss | ord | ss | ss | ord | ord | ord | ord | ord | ord | ord | split |
| $\lambda$-invariant(s) | - | 2 | 2 | 1 | 1,1 | 3 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.