| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 8040.h1 |
8040j2 |
8040.h |
8040j |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 67 \) |
\( 2^{11} \cdot 3^{14} \cdot 5 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$30464$ |
$1.550024$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.89489$ |
$[0, 1, 0, -49056, -4137120]$ |
\(y^2=x^3+x^2-49056x-4137120\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[ ]$ |
| 16080.e1 |
16080a2 |
16080.e |
16080a |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 67 \) |
\( 2^{11} \cdot 3^{14} \cdot 5 \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$3.992624200$ |
$1$ |
|
$3$ |
$60928$ |
$1.550024$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.54458$ |
$[0, -1, 0, -49056, 4137120]$ |
\(y^2=x^3-x^2-49056x+4137120\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(106, 342)]$ |
| 24120.q1 |
24120l2 |
24120.q |
24120l |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 67 \) |
\( 2^{11} \cdot 3^{20} \cdot 5 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$243712$ |
$2.099331$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$5.01521$ |
$[0, 0, 0, -441507, 111260734]$ |
\(y^2=x^3-441507x+111260734\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[ ]$ |
| 40200.n1 |
40200a2 |
40200.n |
40200a |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 67 \) |
\( 2^{11} \cdot 3^{14} \cdot 5^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$8.667676736$ |
$1$ |
|
$1$ |
$731136$ |
$2.354744$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$5.06266$ |
$[0, -1, 0, -1226408, -514687188]$ |
\(y^2=x^3-x^2-1226408x-514687188\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(-441227/27, 46203200/27)]$ |
| 48240.ca1 |
48240u2 |
48240.ca |
48240u |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 67 \) |
\( 2^{11} \cdot 3^{20} \cdot 5 \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$5.181477991$ |
$1$ |
|
$1$ |
$487424$ |
$2.099331$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.69285$ |
$[0, 0, 0, -441507, -111260734]$ |
\(y^2=x^3-441507x-111260734\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(-20555/7, 123012/7)]$ |
| 64320.w1 |
64320j2 |
64320.w |
64320j |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 67 \) |
\( 2^{17} \cdot 3^{14} \cdot 5 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$487424$ |
$1.896599$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.35118$ |
$[0, -1, 0, -196225, -32900735]$ |
\(y^2=x^3-x^2-196225x-32900735\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[ ]$ |
| 64320.cs1 |
64320ct2 |
64320.cs |
64320ct |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 67 \) |
\( 2^{17} \cdot 3^{14} \cdot 5 \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$1.572717500$ |
$1$ |
|
$5$ |
$487424$ |
$1.896599$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.35118$ |
$[0, 1, 0, -196225, 32900735]$ |
\(y^2=x^3+x^2-196225x+32900735\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(218, 729)]$ |
| 80400.cl1 |
80400bf2 |
80400.cl |
80400bf |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 67 \) |
\( 2^{11} \cdot 3^{14} \cdot 5^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$0.225337622$ |
$1$ |
|
$15$ |
$1462272$ |
$2.354744$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.75197$ |
$[0, 1, 0, -1226408, 514687188]$ |
\(y^2=x^3+x^2-1226408x+514687188\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(-62, 24300)]$ |
| 120600.br1 |
120600bn2 |
120600.br |
120600bn |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 67 \) |
\( 2^{11} \cdot 3^{20} \cdot 5^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$11.80813445$ |
$1$ |
|
$1$ |
$5849088$ |
$2.904049$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$5.15067$ |
$[0, 0, 0, -11037675, 13907591750]$ |
\(y^2=x^3-11037675x+13907591750\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(-427330/11, 125142550/11)]$ |
| 192960.s1 |
192960eh2 |
192960.s |
192960eh |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 67 \) |
\( 2^{17} \cdot 3^{20} \cdot 5 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3899392$ |
$2.445904$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.50002$ |
$[0, 0, 0, -1766028, 890085872]$ |
\(y^2=x^3-1766028x+890085872\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[ ]$ |
| 192960.bx1 |
192960br2 |
192960.bx |
192960br |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 67 \) |
\( 2^{17} \cdot 3^{20} \cdot 5 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3899392$ |
$2.445904$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.50002$ |
$[0, 0, 0, -1766028, -890085872]$ |
\(y^2=x^3-1766028x-890085872\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[ ]$ |
| 241200.bz1 |
241200bz2 |
241200.bz |
241200bz |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 67 \) |
\( 2^{11} \cdot 3^{20} \cdot 5^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$8.114027768$ |
$1$ |
|
$1$ |
$11698176$ |
$2.904049$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.86260$ |
$[0, 0, 0, -11037675, -13907591750]$ |
\(y^2=x^3-11037675x-13907591750\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(889631/5, 835307154/5)]$ |
| 321600.bp1 |
321600bp2 |
321600.bp |
321600bp |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 67 \) |
\( 2^{17} \cdot 3^{14} \cdot 5^{7} \cdot 67^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$9.172778842$ |
$1$ |
|
$11$ |
$11698176$ |
$2.701317$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.56044$ |
$[0, -1, 0, -4905633, 4122403137]$ |
\(y^2=x^3-x^2-4905633x+4122403137\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(797, 26800), (472, 43725)]$ |
| 321600.il1 |
321600il2 |
321600.il |
321600il |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 67 \) |
\( 2^{17} \cdot 3^{14} \cdot 5^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$2.345640717$ |
$1$ |
|
$3$ |
$11698176$ |
$2.701317$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.56044$ |
$[0, 1, 0, -4905633, -4122403137]$ |
\(y^2=x^3+x^2-4905633x-4122403137\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(-1197, 6000)]$ |
| 393960.t1 |
393960t2 |
393960.t |
393960t |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 67 \) |
\( 2^{11} \cdot 3^{14} \cdot 5 \cdot 7^{6} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8040$ |
$12$ |
$0$ |
$13.54059325$ |
$1$ |
|
$1$ |
$10967040$ |
$2.522980$ |
$6374982726455618/107353739205$ |
$0.95604$ |
$4.32251$ |
$[0, -1, 0, -2403760, 1414224652]$ |
\(y^2=x^3-x^2-2403760x+1414224652\) |
2.3.0.a.1, 40.6.0.b.1, 804.6.0.?, 8040.12.0.? |
$[(-329263/19, 365981706/19)]$ |