Properties

Label 6370ba
Number of curves $1$
Conductor $6370$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 6370ba1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6370ba do not have complex multiplication.

Modular form 6370.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} - 2 q^{9} + q^{10} - q^{11} - q^{12} + q^{13} - q^{15} + q^{16} - 4 q^{17} - 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 6370ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6370.q1 6370ba1 \([1, 1, 1, -4075, 109017]\) \(-21818208730807/2812160000\) \(-964570880000\) \([]\) \(8448\) \(1.0331\) \(\Gamma_0(N)\)-optimal