sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 637.c have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
7 | 1 |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1−T+2T2 |
1.2.ab
|
3 |
1+3T2 |
1.3.a
|
5 |
1+5T2 |
1.5.a
|
11 |
1+3T+11T2 |
1.11.d
|
17 |
1−7T+17T2 |
1.17.ah
|
19 |
1+7T+19T2 |
1.19.h
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1+5T+29T2 |
1.29.f
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 637.c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1771)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.
Elliptic curves in class 637.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
637.c1 |
637a1 |
[1,−1,0,−107,454] |
−56723625/13 |
−31213 |
[] |
60 |
−0.14604
|
Γ0(N)-optimal |
637.c2 |
637a2 |
[1,−1,0,628,−17823] |
11397810375/62748517 |
−150659189317 |
[] |
420 |
0.82691
|
|