Properties

Label 6336g
Number of curves $4$
Conductor $6336$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6336g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6336g do not have complex multiplication.

Modular form 6336.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + q^{11} - 2 q^{13} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6336g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6336.bm4 6336g1 \([0, 0, 0, -4140, 98864]\) \(1108717875/45056\) \(318901321728\) \([2]\) \(6144\) \(0.97321\) \(\Gamma_0(N)\)-optimal
6336.bm2 6336g2 \([0, 0, 0, -65580, 6464048]\) \(4406910829875/7744\) \(54811164672\) \([2]\) \(12288\) \(1.3198\)  
6336.bm3 6336g3 \([0, 0, 0, -50220, -4302288]\) \(2714704875/21296\) \(109882682376192\) \([2]\) \(18432\) \(1.5225\)  
6336.bm1 6336g4 \([0, 0, 0, -84780, 2374704]\) \(13060888875/7086244\) \(36563462560677888\) \([2]\) \(36864\) \(1.8691\)