Show commands: SageMath
Rank
The elliptic curves in class 6336g have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 6336g do not have complex multiplication.Modular form 6336.2.a.g
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 6336g
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6336.bm4 | 6336g1 | \([0, 0, 0, -4140, 98864]\) | \(1108717875/45056\) | \(318901321728\) | \([2]\) | \(6144\) | \(0.97321\) | \(\Gamma_0(N)\)-optimal |
6336.bm2 | 6336g2 | \([0, 0, 0, -65580, 6464048]\) | \(4406910829875/7744\) | \(54811164672\) | \([2]\) | \(12288\) | \(1.3198\) | |
6336.bm3 | 6336g3 | \([0, 0, 0, -50220, -4302288]\) | \(2714704875/21296\) | \(109882682376192\) | \([2]\) | \(18432\) | \(1.5225\) | |
6336.bm1 | 6336g4 | \([0, 0, 0, -84780, 2374704]\) | \(13060888875/7086244\) | \(36563462560677888\) | \([2]\) | \(36864\) | \(1.8691\) |