Properties

Label 6327c
Number of curves $1$
Conductor $6327$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 6327c1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(19\)\(1 - T\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6327c do not have complex multiplication.

Modular form 6327.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + 2 q^{5} - q^{7} - 3 q^{11} + 6 q^{13} + 4 q^{16} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 6327c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6327.b1 6327c1 \([0, 0, 1, -6624, -28546]\) \(44091731607552/25033168477\) \(18249179819733\) \([]\) \(10080\) \(1.2345\) \(\Gamma_0(N)\)-optimal