Properties

Label 6300.z
Number of curves $1$
Conductor $6300$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 6300.z1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6300.z do not have complex multiplication.

Modular form 6300.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + q^{11} + 2 q^{13} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 6300.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6300.z1 6300l1 \([0, 0, 0, 9375, 165625]\) \(800000/567\) \(-64584843750000\) \([]\) \(11520\) \(1.3384\) \(\Gamma_0(N)\)-optimal