Properties

Label 6300.2.a.z
Level $6300$
Weight $2$
Character orbit 6300.a
Self dual yes
Analytic conductor $50.306$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2100)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{7} + O(q^{10}) \) \( q + q^{7} + q^{11} + 2q^{13} + 6q^{19} + q^{23} - q^{29} - 2q^{31} + 7q^{37} + 8q^{41} + q^{43} - 2q^{47} + q^{49} - 14q^{53} - 10q^{59} + 3q^{67} + 9q^{71} + q^{77} + q^{79} + 2q^{83} - 2q^{89} + 2q^{91} + 10q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6300.2.a.z 1
3.b odd 2 1 2100.2.a.p yes 1
5.b even 2 1 6300.2.a.k 1
5.c odd 4 2 6300.2.k.k 2
12.b even 2 1 8400.2.a.h 1
15.d odd 2 1 2100.2.a.c 1
15.e even 4 2 2100.2.k.d 2
60.h even 2 1 8400.2.a.cp 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.2.a.c 1 15.d odd 2 1
2100.2.a.p yes 1 3.b odd 2 1
2100.2.k.d 2 15.e even 4 2
6300.2.a.k 1 5.b even 2 1
6300.2.a.z 1 1.a even 1 1 trivial
6300.2.k.k 2 5.c odd 4 2
8400.2.a.h 1 12.b even 2 1
8400.2.a.cp 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6300))\):

\( T_{11} - 1 \)
\( T_{13} - 2 \)
\( T_{17} \)
\( T_{37} - 7 \)