Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-5380833x-4803170463\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-5380833xz^2-4803170463z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-435847500x-3502818810000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 62400 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-3110023987200000000$ | = | $-1 \cdot 2^{27} \cdot 3^{3} \cdot 5^{8} \cdot 13^{3} $ |
|
j-invariant: | $j$ | = | \( -\frac{168256703745625}{30371328} \) | = | $-1 \cdot 2^{-9} \cdot 3^{-3} \cdot 5^{4} \cdot 11^{3} \cdot 13^{-3} \cdot 587^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5521502795351186956240213415$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.43947090040580048176433360383$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0526824515299218$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.262864714112238$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.049562416261697048581911836716$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 2\cdot1\cdot3\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.29737449757018229149147102030 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.297374498 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.049562 \cdot 1.000000 \cdot 6}{1^2} \\ & \approx 0.297374498\end{aligned}$$
Modular invariants
Modular form 62400.2.a.j
For more coefficients, see the Downloads section to the right.
Modular degree: | 1866240 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{17}^{*}$ | additive | 1 | 6 | 27 | 9 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$13$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 312 = 2^{3} \cdot 3 \cdot 13 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 145 & 6 \\ 123 & 19 \end{array}\right),\left(\begin{array}{rr} 79 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 307 & 6 \\ 306 & 7 \end{array}\right),\left(\begin{array}{rr} 309 & 310 \\ 302 & 305 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 155 & 306 \\ 153 & 293 \end{array}\right),\left(\begin{array}{rr} 146 & 171 \\ 1 & 274 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[312])$ is a degree-$120766464$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/312\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
$3$ | nonsplit multiplicative | $4$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
$5$ | additive | $10$ | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 62400.j
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 1950.t1, its twist by $40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-6}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.7800.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.18982080000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.233280000.13 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.1460160000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.5821622495314056165906603933696000000000000.6 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.551486826997560410112000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | add | ord | ss | nonsplit | ss | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | 1 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.