Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-23433x+1366263\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-23433xz^2+1366263z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1898100x+1001700000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(18, 975)$ | $0.98601731664414117772102489684$ | $\infty$ |
$(83, 0)$ | $0$ | $2$ |
$(93, 0)$ | $0$ | $2$ |
Integral points
\( \left(-177, 0\right) \), \((18,\pm 975)\), \((57,\pm 468)\), \( \left(83, 0\right) \), \( \left(93, 0\right) \), \((123,\pm 600)\), \((183,\pm 1800)\), \((1293,\pm 46200)\)
Invariants
Conductor: | $N$ | = | \( 62400 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $7884864000000$ | = | $2^{12} \cdot 3^{6} \cdot 5^{6} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{22235451328}{123201} \) | = | $2^{6} \cdot 3^{-6} \cdot 13^{-2} \cdot 19^{3} \cdot 37^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3174352985664315576959626155$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.18043083821056393902164917257$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0666224422011716$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.7857199412274345$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.98601731664414117772102489684$ |
|
Real period: | $\Omega$ | ≈ | $0.74330029532708195193811190196$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2^{2}\cdot( 2 \cdot 3 )\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $8.7948835519104841919331633952 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.794883552 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.743300 \cdot 0.986017 \cdot 192}{4^2} \\ & \approx 8.794883552\end{aligned}$$
Modular invariants
Modular form 62400.2.a.fy
For more coefficients, see the Downloads section to the right.
Modular degree: | 196608 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 6 | 12 | 0 |
$3$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 521 & 1250 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1081 & 940 \\ 290 & 321 \end{array}\right),\left(\begin{array}{rr} 623 & 0 \\ 0 & 1559 \end{array}\right),\left(\begin{array}{rr} 1557 & 4 \\ 1556 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 779 & 620 \\ 310 & 1239 \end{array}\right),\left(\begin{array}{rr} 391 & 1250 \\ 470 & 941 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$19322634240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 25 = 5^{2} \) |
$3$ | split multiplicative | $4$ | \( 20800 = 2^{6} \cdot 5^{2} \cdot 13 \) |
$5$ | additive | $14$ | \( 2496 = 2^{6} \cdot 3 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 62400.fy
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1248.b3, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{3}, \sqrt{10})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-30}, \sqrt{-65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-10}, \sqrt{-26})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.8979181539709000089600000000.15 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | add | ss | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 2 | - | 1,1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.