Properties

Label 62400.fy
Number of curves $4$
Conductor $62400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 62400.fy have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 62400.fy do not have complex multiplication.

Modular form 62400.2.a.fy

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + 4 q^{11} + q^{13} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 62400.fy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
62400.fy1 62400cr4 \([0, 1, 0, -374433, 88063263]\) \(11339065490696/351\) \(179712000000\) \([2]\) \(393216\) \(1.6640\)  
62400.fy2 62400cr2 \([0, 1, 0, -23433, 1366263]\) \(22235451328/123201\) \(7884864000000\) \([2, 2]\) \(196608\) \(1.3174\)  
62400.fy3 62400cr3 \([0, 1, 0, -10433, 2887263]\) \(-245314376/6908733\) \(-3537271296000000\) \([2]\) \(393216\) \(1.6640\)  
62400.fy4 62400cr1 \([0, 1, 0, -2308, -6862]\) \(1360251712/771147\) \(771147000000\) \([2]\) \(98304\) \(0.97086\) \(\Gamma_0(N)\)-optimal