Properties

Label 62400.cs
Number of curves $4$
Conductor $62400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 62400.cs have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 62400.cs do not have complex multiplication.

Modular form 62400.2.a.cs

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 62400.cs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
62400.cs1 62400u4 \([0, -1, 0, -769633, 259511137]\) \(49235161015876/137109375\) \(140400000000000000\) \([2]\) \(589824\) \(2.1628\)  
62400.cs2 62400u3 \([0, -1, 0, -717633, -232876863]\) \(39914580075556/172718325\) \(176863564800000000\) \([2]\) \(589824\) \(2.1628\)  
62400.cs3 62400u2 \([0, -1, 0, -67633, 473137]\) \(133649126224/77000625\) \(19712160000000000\) \([2, 2]\) \(294912\) \(1.8162\)  
62400.cs4 62400u1 \([0, -1, 0, 16867, 50637]\) \(33165879296/19278675\) \(-308458800000000\) \([2]\) \(147456\) \(1.4697\) \(\Gamma_0(N)\)-optimal