Properties

Label 6171.a
Number of curves $1$
Conductor $6171$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 6171.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(11\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6171.a do not have complex multiplication.

Modular form 6171.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{5} - 2 q^{6} - 3 q^{7} + q^{9} - 4 q^{10} + 2 q^{12} + 2 q^{13} + 6 q^{14} + 2 q^{15} - 4 q^{16} - q^{17} - 2 q^{18} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 6171.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6171.a1 6171e1 \([0, 1, 1, -4572, -158416]\) \(-87367919423488/37321507107\) \(-4515902359947\) \([]\) \(15504\) \(1.1359\) \(\Gamma_0(N)\)-optimal