Show commands: SageMath
Rank
The elliptic curves in class 61504bm have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 61504bm do not have complex multiplication.Modular form 61504.2.a.bm
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 61504bm
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
61504.be4 | 61504bm1 | \([0, 0, 0, -42284, 16682960]\) | \(-35937/496\) | \(-115396267416223744\) | \([2]\) | \(368640\) | \(1.9555\) | \(\Gamma_0(N)\)-optimal |
61504.be3 | 61504bm2 | \([0, 0, 0, -1272364, 550537680]\) | \(979146657/3844\) | \(894321072475734016\) | \([2, 2]\) | \(737280\) | \(2.3021\) | |
61504.be2 | 61504bm3 | \([0, 0, 0, -1887404, -36702512]\) | \(3196010817/1847042\) | \(429721275324590194688\) | \([2]\) | \(1474560\) | \(2.6486\) | |
61504.be1 | 61504bm4 | \([0, 0, 0, -20338604, 35304479952]\) | \(3999236143617/62\) | \(14424533427027968\) | \([2]\) | \(1474560\) | \(2.6486\) |