Show commands: SageMath
Rank
The elliptic curves in class 6120r have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 6120r do not have complex multiplication.Modular form 6120.2.a.r
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 6120r
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6120.h3 | 6120r1 | \([0, 0, 0, -20658, -1142827]\) | \(83587439220736/6885\) | \(80306640\) | \([2]\) | \(6144\) | \(0.96032\) | \(\Gamma_0(N)\)-optimal |
6120.h2 | 6120r2 | \([0, 0, 0, -20703, -1137598]\) | \(5258429611216/47403225\) | \(8846579462400\) | \([2, 2]\) | \(12288\) | \(1.3069\) | |
6120.h1 | 6120r3 | \([0, 0, 0, -36003, 768782]\) | \(6913728144004/3658971285\) | \(2731407428367360\) | \([2]\) | \(24576\) | \(1.6535\) | |
6120.h4 | 6120r4 | \([0, 0, 0, -6123, -2709322]\) | \(-34008619684/4228250625\) | \(-3156372178560000\) | \([2]\) | \(24576\) | \(1.6535\) |