Properties

Label 6120r
Number of curves $4$
Conductor $6120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6120r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6120r do not have complex multiplication.

Modular form 6120.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{13} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6120r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6120.h3 6120r1 \([0, 0, 0, -20658, -1142827]\) \(83587439220736/6885\) \(80306640\) \([2]\) \(6144\) \(0.96032\) \(\Gamma_0(N)\)-optimal
6120.h2 6120r2 \([0, 0, 0, -20703, -1137598]\) \(5258429611216/47403225\) \(8846579462400\) \([2, 2]\) \(12288\) \(1.3069\)  
6120.h1 6120r3 \([0, 0, 0, -36003, 768782]\) \(6913728144004/3658971285\) \(2731407428367360\) \([2]\) \(24576\) \(1.6535\)  
6120.h4 6120r4 \([0, 0, 0, -6123, -2709322]\) \(-34008619684/4228250625\) \(-3156372178560000\) \([2]\) \(24576\) \(1.6535\)