Properties

Label 61152.x
Number of curves $4$
Conductor $61152$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 61152.x have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 61152.x do not have complex multiplication.

Modular form 61152.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{9} - 4 q^{11} - q^{13} - 2 q^{15} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 61152.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
61152.x1 61152c4 \([0, -1, 0, -183472, -30187352]\) \(11339065490696/351\) \(21142937088\) \([2]\) \(294912\) \(1.4857\)  
61152.x2 61152c3 \([0, -1, 0, -18097, 139777]\) \(1360251712/771147\) \(371608262258688\) \([2]\) \(294912\) \(1.4857\)  
61152.x3 61152c1 \([0, -1, 0, -11482, -467480]\) \(22235451328/123201\) \(927646364736\) \([2, 2]\) \(147456\) \(1.1391\) \(\Gamma_0(N)\)-optimal
61152.x4 61152c2 \([0, -1, 0, -5112, -989820]\) \(-245314376/6908733\) \(-416156430703104\) \([2]\) \(294912\) \(1.4857\)