Properties

Label 6050s
Number of curves $1$
Conductor $6050$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 6050s1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6050s do not have complex multiplication.

Modular form 6050.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 3 q^{3} + q^{4} - 3 q^{6} + q^{7} - q^{8} + 6 q^{9} + 3 q^{12} - 6 q^{13} - q^{14} + q^{16} - 4 q^{17} - 6 q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 6050s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6050.u1 6050s1 \([1, -1, 0, 114383, 15699041]\) \(3267/4\) \(-202636129695312500\) \([]\) \(137280\) \(2.0070\) \(\Gamma_0(N)\)-optimal