Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-150789x+22487149\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-150789xz^2+22487149z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-12213936x+16429773402\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(5596/25, 69/125)$ | $4.1920939722134483582688785163$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 59584 \) | = | $2^{6} \cdot 7^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-143061184$ | = | $-1 \cdot 2^{6} \cdot 7^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( -\frac{50357871050752}{19} \) | = | $-1 \cdot 2^{18} \cdot 19^{-1} \cdot 577^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3529678217989471107813873160$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.033439156991317803520094883549$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.104947099482495$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.3095867678427$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.1920939722134483582688785163$ |
|
Real period: | $\Omega$ | ≈ | $1.1030118380976675437335846361$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.6239292777693081233386916944 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.623929278 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.103012 \cdot 4.192094 \cdot 1}{1^2} \\ & \approx 4.623929278\end{aligned}$$
Modular invariants
Modular form 59584.2.a.u
For more coefficients, see the Downloads section to the right.
Modular degree: | 163296 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | 1 | 6 | 6 | 0 |
$7$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 27.36.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 28728 = 2^{3} \cdot 3^{3} \cdot 7 \cdot 19 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 11339 & 24570 \\ 11340 & 24569 \end{array}\right),\left(\begin{array}{rr} 23687 & 24549 \\ 7581 & 28636 \end{array}\right),\left(\begin{array}{rr} 28675 & 54 \\ 28674 & 55 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 12242 & 20475 \\ 28343 & 3632 \end{array}\right),\left(\begin{array}{rr} 14363 & 0 \\ 0 & 28727 \end{array}\right),\left(\begin{array}{rr} 24623 & 0 \\ 0 & 28727 \end{array}\right),\left(\begin{array}{rr} 4073 & 16380 \\ 24290 & 28307 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 22906 & 21967 \end{array}\right),\left(\begin{array}{rr} 7181 & 0 \\ 0 & 28727 \end{array}\right)$.
The torsion field $K:=\Q(E[28728])$ is a degree-$92643856220160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/28728\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 931 = 7^{2} \cdot 19 \) |
$7$ | additive | $26$ | \( 1216 = 2^{6} \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 3136 = 2^{6} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 59584.u
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 19.a1, its twist by $-56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{42}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.76.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.109744.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.205978074624.4 | \(\Z/3\Z\) | not in database |
$6$ | 6.6.450474049202688.2 | \(\Z/9\Z\) | not in database |
$6$ | 6.2.6846916608.2 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.1557130999647530092068864.1 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.201906434092298129641985063519986384896.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.6.2112012614563679138031447702469448035763264421888.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ord | add | ord | ord | ord | split | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 7 | 1 | - | 1 | 1 | 1 | 2 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.