Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
19.a1 |
19a2 |
19.a |
19a |
$3$ |
$9$ |
\( 19 \) |
\( -19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
27.72.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$3$ |
$0.033439$ |
$-50357871050752/19$ |
$[0, 1, 1, -769, -8470]$ |
\(y^2+y=x^3+x^2-769x-8470\) |
171.b1 |
171b3 |
171.b |
171b |
$3$ |
$9$ |
\( 3^{2} \cdot 19 \) |
\( - 3^{6} \cdot 19 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.72.0.1 |
3B.1.1 |
$2.033701819$ |
$1$ |
|
$4$ |
$72$ |
$0.582746$ |
$-50357871050752/19$ |
$[0, 0, 1, -6924, 221760]$ |
\(y^2+y=x^3-6924x+221760\) |
304.f1 |
304e3 |
304.f |
304e |
$3$ |
$9$ |
\( 2^{4} \cdot 19 \) |
\( - 2^{12} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$216$ |
$0.726586$ |
$-50357871050752/19$ |
$[0, -1, 0, -12309, 529757]$ |
\(y^2=x^3-x^2-12309x+529757\) |
361.b1 |
361b3 |
361.b |
361b |
$3$ |
$9$ |
\( 19^{2} \) |
\( - 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1080$ |
$1.505659$ |
$-50357871050752/19$ |
$[0, -1, 1, -277729, 56427893]$ |
\(y^2+y=x^3-x^2-277729x+56427893\) |
475.b1 |
475a3 |
475.b |
475a |
$3$ |
$9$ |
\( 5^{2} \cdot 19 \) |
\( - 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$324$ |
$0.838158$ |
$-50357871050752/19$ |
$[0, -1, 1, -19233, -1020257]$ |
\(y^2+y=x^3-x^2-19233x-1020257\) |
931.a1 |
931b3 |
931.a |
931b |
$3$ |
$9$ |
\( 7^{2} \cdot 19 \) |
\( - 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1134$ |
$1.006393$ |
$-50357871050752/19$ |
$[0, -1, 1, -37697, 2829742]$ |
\(y^2+y=x^3-x^2-37697x+2829742\) |
1216.b1 |
1216q3 |
1216.b |
1216q |
$3$ |
$9$ |
\( 2^{6} \cdot 19 \) |
\( - 2^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$0.595904332$ |
$1$ |
|
$2$ |
$432$ |
$0.380013$ |
$-50357871050752/19$ |
$[0, 1, 0, -3077, 64681]$ |
\(y^2=x^3+x^2-3077x+64681\) |
1216.o1 |
1216d3 |
1216.o |
1216d |
$3$ |
$9$ |
\( 2^{6} \cdot 19 \) |
\( - 2^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9.167331319$ |
$1$ |
|
$0$ |
$432$ |
$0.380013$ |
$-50357871050752/19$ |
$[0, -1, 0, -3077, -64681]$ |
\(y^2=x^3-x^2-3077x-64681\) |
2299.b1 |
2299d3 |
2299.b |
2299d |
$3$ |
$9$ |
\( 11^{2} \cdot 19 \) |
\( - 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$4050$ |
$1.232388$ |
$-50357871050752/19$ |
$[0, 1, 1, -93089, 10900929]$ |
\(y^2+y=x^3+x^2-93089x+10900929\) |
2736.c1 |
2736q3 |
2736.c |
2736q |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$11.02710220$ |
$1$ |
|
$0$ |
$5184$ |
$1.275892$ |
$-50357871050752/19$ |
$[0, 0, 0, -110784, -14192656]$ |
\(y^2=x^3-110784x-14192656\) |
3211.a1 |
3211a3 |
3211.a |
3211a |
$3$ |
$9$ |
\( 13^{2} \cdot 19 \) |
\( - 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$5.435237083$ |
$1$ |
|
$2$ |
$6480$ |
$1.315914$ |
$-50357871050752/19$ |
$[0, 1, 1, -130017, -18088053]$ |
\(y^2+y=x^3+x^2-130017x-18088053\) |
3249.d1 |
3249c3 |
3249.d |
3249c |
$3$ |
$9$ |
\( 3^{2} \cdot 19^{2} \) |
\( - 3^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9.202414482$ |
$1$ |
|
$0$ |
$25920$ |
$2.054966$ |
$-50357871050752/19$ |
$[0, 0, 1, -2499564, -1521053555]$ |
\(y^2+y=x^3-2499564x-1521053555\) |
4275.i1 |
4275k3 |
4275.i |
4275k |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1.452281787$ |
$1$ |
|
$0$ |
$7776$ |
$1.387465$ |
$-50357871050752/19$ |
$[0, 0, 1, -173100, 27720031]$ |
\(y^2+y=x^3-173100x+27720031\) |
5491.b1 |
5491a3 |
5491.b |
5491a |
$3$ |
$9$ |
\( 17^{2} \cdot 19 \) |
\( - 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$15120$ |
$1.450047$ |
$-50357871050752/19$ |
$[0, -1, 1, -222337, -40278040]$ |
\(y^2+y=x^3-x^2-222337x-40278040\) |
5776.c1 |
5776q3 |
5776.c |
5776q |
$3$ |
$9$ |
\( 2^{4} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$16.54388095$ |
$1$ |
|
$0$ |
$77760$ |
$2.198807$ |
$-50357871050752/19$ |
$[0, 1, 0, -4443669, -3606941501]$ |
\(y^2=x^3+x^2-4443669x-3606941501\) |
7600.c1 |
7600m3 |
7600.c |
7600m |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$23328$ |
$1.531305$ |
$-50357871050752/19$ |
$[0, 1, 0, -307733, 65604163]$ |
\(y^2=x^3+x^2-307733x+65604163\) |
8379.j1 |
8379f3 |
8379.j |
8379f |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$21.57657708$ |
$1$ |
|
$0$ |
$27216$ |
$1.555700$ |
$-50357871050752/19$ |
$[0, 0, 1, -339276, -76063766]$ |
\(y^2+y=x^3-339276x-76063766\) |
9025.d1 |
9025c3 |
9025.d |
9025c |
$3$ |
$9$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$116640$ |
$2.310379$ |
$-50357871050752/19$ |
$[0, 1, 1, -6943233, 7039600194]$ |
\(y^2+y=x^3+x^2-6943233x+7039600194\) |
10051.c1 |
10051b3 |
10051.c |
10051b |
$3$ |
$9$ |
\( 19 \cdot 23^{2} \) |
\( - 19 \cdot 23^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$0.944429848$ |
$1$ |
|
$8$ |
$38016$ |
$1.601187$ |
$-50357871050752/19$ |
$[0, 1, 1, -406977, 99796080]$ |
\(y^2+y=x^3+x^2-406977x+99796080\) |
10944.ck1 |
10944t3 |
10944.ck |
10944t |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$10368$ |
$0.929318$ |
$-50357871050752/19$ |
$[0, 0, 0, -27696, 1774082]$ |
\(y^2=x^3-27696x+1774082\) |
10944.cl1 |
10944cn3 |
10944.cl |
10944cn |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$10368$ |
$0.929318$ |
$-50357871050752/19$ |
$[0, 0, 0, -27696, -1774082]$ |
\(y^2=x^3-27696x-1774082\) |
14896.a1 |
14896bg3 |
14896.a |
14896bg |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$81648$ |
$1.699541$ |
$-50357871050752/19$ |
$[0, 1, 0, -603157, -180500349]$ |
\(y^2=x^3+x^2-603157x-180500349\) |
15979.e1 |
15979a3 |
15979.e |
15979a |
$3$ |
$9$ |
\( 19 \cdot 29^{2} \) |
\( - 19 \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$37.78583381$ |
$1$ |
|
$0$ |
$72576$ |
$1.717087$ |
$-50357871050752/19$ |
$[0, -1, 1, -647009, -200099543]$ |
\(y^2+y=x^3-x^2-647009x-200099543\) |
17689.f1 |
17689g3 |
17689.f |
17689g |
$3$ |
$9$ |
\( 7^{2} \cdot 19^{2} \) |
\( - 7^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$10.04336916$ |
$1$ |
|
$0$ |
$408240$ |
$2.478615$ |
$-50357871050752/19$ |
$[0, 1, 1, -13608737, -19327549923]$ |
\(y^2+y=x^3+x^2-13608737x-19327549923\) |
18259.a1 |
18259a3 |
18259.a |
18259a |
$3$ |
$9$ |
\( 19 \cdot 31^{2} \) |
\( - 19 \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4.747848387$ |
$1$ |
|
$0$ |
$90720$ |
$1.750433$ |
$-50357871050752/19$ |
$[0, -1, 1, -739329, 244930132]$ |
\(y^2+y=x^3-x^2-739329x+244930132\) |
20691.i1 |
20691o3 |
20691.i |
20691o |
$3$ |
$9$ |
\( 3^{2} \cdot 11^{2} \cdot 19 \) |
\( - 3^{6} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20.51251636$ |
$1$ |
|
$0$ |
$97200$ |
$1.781693$ |
$-50357871050752/19$ |
$[0, 0, 1, -837804, -295162893]$ |
\(y^2+y=x^3-837804x-295162893\) |
23104.i1 |
23104u3 |
23104.i |
23104u |
$3$ |
$9$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{6} \cdot 19^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1.622303643$ |
$1$ |
|
$6$ |
$155520$ |
$1.852232$ |
$-50357871050752/19$ |
$[0, 1, 0, -1110917, 450312229]$ |
\(y^2=x^3+x^2-1110917x+450312229\) |
23104.bs1 |
23104bz3 |
23104.bs |
23104bz |
$3$ |
$9$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$41.68961490$ |
$1$ |
|
$0$ |
$155520$ |
$1.852232$ |
$-50357871050752/19$ |
$[0, -1, 0, -1110917, -450312229]$ |
\(y^2=x^3-x^2-1110917x-450312229\) |
23275.l1 |
23275i3 |
23275.l |
23275i |
$3$ |
$9$ |
\( 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 5^{6} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$122472$ |
$1.811113$ |
$-50357871050752/19$ |
$[0, 1, 1, -942433, 351832919]$ |
\(y^2+y=x^3+x^2-942433x+351832919\) |
26011.a1 |
26011a3 |
26011.a |
26011a |
$3$ |
$9$ |
\( 19 \cdot 37^{2} \) |
\( - 19 \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$13.97522139$ |
$1$ |
|
$0$ |
$155520$ |
$1.838898$ |
$-50357871050752/19$ |
$[0, 1, 1, -1053217, -416381515]$ |
\(y^2+y=x^3+x^2-1053217x-416381515\) |
28899.k1 |
28899c3 |
28899.k |
28899c |
$3$ |
$9$ |
\( 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 3^{6} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$155520$ |
$1.865219$ |
$-50357871050752/19$ |
$[0, 0, 1, -1170156, 487207269]$ |
\(y^2+y=x^3-1170156x+487207269\) |
30400.k1 |
30400g3 |
30400.k |
30400g |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$21.32512539$ |
$1$ |
|
$0$ |
$46656$ |
$1.184732$ |
$-50357871050752/19$ |
$[0, 1, 0, -76933, -8238987]$ |
\(y^2=x^3+x^2-76933x-8238987\) |
30400.br1 |
30400bv3 |
30400.br |
30400bv |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$6.006027384$ |
$1$ |
|
$2$ |
$46656$ |
$1.184732$ |
$-50357871050752/19$ |
$[0, -1, 0, -76933, 8238987]$ |
\(y^2=x^3-x^2-76933x+8238987\) |
31939.e1 |
31939b3 |
31939.e |
31939b |
$3$ |
$9$ |
\( 19 \cdot 41^{2} \) |
\( - 19 \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$60.32974189$ |
$1$ |
|
$0$ |
$207360$ |
$1.890224$ |
$-50357871050752/19$ |
$[0, -1, 1, -1293249, -565640702]$ |
\(y^2+y=x^3-x^2-1293249x-565640702\) |
35131.b1 |
35131c3 |
35131.b |
35131c |
$3$ |
$9$ |
\( 19 \cdot 43^{2} \) |
\( - 19 \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$243810$ |
$1.914040$ |
$-50357871050752/19$ |
$[0, -1, 1, -1422497, 653492395]$ |
\(y^2+y=x^3-x^2-1422497x+653492395\) |
36784.bk1 |
36784bj3 |
36784.bk |
36784bj |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 19 \) |
\( - 2^{12} \cdot 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$81$ |
$3$ |
$0$ |
$291600$ |
$1.925533$ |
$-50357871050752/19$ |
$[0, -1, 0, -1489429, -699148899]$ |
\(y^2=x^3-x^2-1489429x-699148899\) |
41971.a1 |
41971a3 |
41971.a |
41971a |
$3$ |
$9$ |
\( 19 \cdot 47^{2} \) |
\( - 19 \cdot 47^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$316710$ |
$1.958513$ |
$-50357871050752/19$ |
$[0, 1, 1, -1699457, 852167382]$ |
\(y^2+y=x^3+x^2-1699457x+852167382\) |
43681.i1 |
43681j3 |
43681.i |
43681j |
$3$ |
$9$ |
\( 11^{2} \cdot 19^{2} \) |
\( - 11^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$71.58659359$ |
$1$ |
|
$0$ |
$1458000$ |
$2.704605$ |
$-50357871050752/19$ |
$[0, -1, 1, -33605249, -74971104968]$ |
\(y^2+y=x^3-x^2-33605249x-74971104968\) |
49419.j1 |
49419f3 |
49419.j |
49419f |
$3$ |
$9$ |
\( 3^{2} \cdot 17^{2} \cdot 19 \) |
\( - 3^{6} \cdot 17^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$5.830318600$ |
$1$ |
|
$0$ |
$362880$ |
$1.999352$ |
$-50357871050752/19$ |
$[0, 0, 1, -2001036, 1089508108]$ |
\(y^2+y=x^3-2001036x+1089508108\) |
51376.w1 |
51376x3 |
51376.w |
51376x |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{12} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$5.796263560$ |
$1$ |
|
$0$ |
$466560$ |
$2.009060$ |
$-50357871050752/19$ |
$[0, -1, 0, -2080277, 1155555101]$ |
\(y^2=x^3-x^2-2080277x+1155555101\) |
51984.i1 |
51984cw3 |
51984.i |
51984cw |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1866240$ |
$2.748112$ |
$-50357871050752/19$ |
$[0, 0, 0, -39993024, 97347427504]$ |
\(y^2=x^3-39993024x+97347427504\) |
53371.b1 |
53371a3 |
53371.b |
53371a |
$3$ |
$9$ |
\( 19 \cdot 53^{2} \) |
\( - 19 \cdot 53^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$36.37381481$ |
$1$ |
|
$0$ |
$432432$ |
$2.018585$ |
$-50357871050752/19$ |
$[0, -1, 1, -2161057, -1222057453]$ |
\(y^2+y=x^3-x^2-2161057x-1222057453\) |
57475.g1 |
57475h3 |
57475.g |
57475h |
$3$ |
$9$ |
\( 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 5^{6} \cdot 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$437400$ |
$2.037106$ |
$-50357871050752/19$ |
$[0, -1, 1, -2327233, 1367270618]$ |
\(y^2+y=x^3-x^2-2327233x+1367270618\) |
59584.u1 |
59584bn3 |
59584.u |
59584bn |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 19 \) |
\( - 2^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4.192093972$ |
$1$ |
|
$0$ |
$163296$ |
$1.352968$ |
$-50357871050752/19$ |
$[0, 1, 0, -150789, 22487149]$ |
\(y^2=x^3+x^2-150789x+22487149\) |
59584.db1 |
59584co3 |
59584.db |
59584co |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 19 \) |
\( - 2^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$96.33960247$ |
$1$ |
|
$0$ |
$163296$ |
$1.352968$ |
$-50357871050752/19$ |
$[0, -1, 0, -150789, -22487149]$ |
\(y^2=x^3-x^2-150789x-22487149\) |
61009.b1 |
61009b3 |
61009.b |
61009b |
$3$ |
$9$ |
\( 13^{2} \cdot 19^{2} \) |
\( - 13^{6} \cdot 19^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4.695009198$ |
$1$ |
|
$2$ |
$2332800$ |
$2.788132$ |
$-50357871050752/19$ |
$[0, -1, 1, -46936257, 123784336522]$ |
\(y^2+y=x^3-x^2-46936257x+123784336522\) |
66139.a1 |
66139a3 |
66139.a |
66139a |
$3$ |
$9$ |
\( 19 \cdot 59^{2} \) |
\( - 19 \cdot 59^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$3.615231054$ |
$1$ |
|
$0$ |
$620136$ |
$2.072208$ |
$-50357871050752/19$ |
$[0, 1, 1, -2678049, 1685955405]$ |
\(y^2+y=x^3+x^2-2678049x+1685955405\) |
68400.cs1 |
68400ec3 |
68400.cs |
68400ec |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$57.16892328$ |
$1$ |
|
$0$ |
$559872$ |
$2.080612$ |
$-50357871050752/19$ |
$[0, 0, 0, -2769600, -1774082000]$ |
\(y^2=x^3-2769600x-1774082000\) |
70699.a1 |
70699a3 |
70699.a |
70699a |
$3$ |
$9$ |
\( 19 \cdot 61^{2} \) |
\( - 19 \cdot 61^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$691740$ |
$2.088875$ |
$-50357871050752/19$ |
$[0, 1, 1, -2862689, -1865226945]$ |
\(y^2+y=x^3+x^2-2862689x-1865226945\) |
80275.m1 |
80275a3 |
80275.m |
80275a |
$3$ |
$9$ |
\( 5^{2} \cdot 13^{2} \cdot 19 \) |
\( - 5^{6} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$59.88194386$ |
$1$ |
|
$0$ |
$699840$ |
$2.120632$ |
$-50357871050752/19$ |
$[0, -1, 1, -3250433, -2254505732]$ |
\(y^2+y=x^3-x^2-3250433x-2254505732\) |