Properties

Label 5850.d
Number of curves $4$
Conductor $5850$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5850.d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5850.d do not have complex multiplication.

Modular form 5850.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 4 q^{7} - q^{8} + 4 q^{11} - q^{13} + 4 q^{14} + q^{16} + 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5850.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5850.d1 5850m3 \([1, -1, 0, -4666392, -3878727984]\) \(986551739719628473/111045168\) \(1264873866750000\) \([2]\) \(163840\) \(2.3221\)  
5850.d2 5850m4 \([1, -1, 0, -526392, 49988016]\) \(1416134368422073/725251155408\) \(8261063942069250000\) \([2]\) \(163840\) \(2.3221\)  
5850.d3 5850m2 \([1, -1, 0, -292392, -60225984]\) \(242702053576633/2554695936\) \(29099583396000000\) \([2, 2]\) \(81920\) \(1.9755\)  
5850.d4 5850m1 \([1, -1, 0, -4392, -2337984]\) \(-822656953/207028224\) \(-2358180864000000\) \([2]\) \(40960\) \(1.6290\) \(\Gamma_0(N)\)-optimal