Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-x^2-2327233x+1367270618\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-x^2z-2327233xz^2+1367270618z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3016094400x+63755184834000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 57475 \) | = | $5^{2} \cdot 11^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-525932171875$ | = | $-1 \cdot 5^{6} \cdot 11^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( -\frac{50357871050752}{19} \) | = | $-1 \cdot 2^{18} \cdot 19^{-1} \cdot 577^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0371057496075532628514463392$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.033439156991317803520094883605$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.104947099482495$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.072875329510366$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.55649702457377127079527494771$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.55649702457377127079527494771 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.556497025 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.556497 \cdot 1.000000 \cdot 1}{1^2} \\ & \approx 0.556497025\end{aligned}$$
Modular invariants
Modular form 57475.2.a.g
For more coefficients, see the Downloads section to the right.
Modular degree: | 437400 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$11$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 27.36.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 56430 = 2 \cdot 3^{3} \cdot 5 \cdot 11 \cdot 19 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 20131 & 27720 \\ 30085 & 15511 \end{array}\right),\left(\begin{array}{rr} 56377 & 54 \\ 56376 & 55 \end{array}\right),\left(\begin{array}{rr} 41039 & 0 \\ 0 & 56429 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 50608 & 49669 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 30691 & 30855 \\ 34485 & 55496 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 45143 & 0 \\ 0 & 56429 \end{array}\right)$.
The torsion field $K:=\Q(E[56430])$ is a degree-$1137368770560000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/56430\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$5$ | additive | $14$ | \( 2299 = 11^{2} \cdot 19 \) |
$11$ | additive | $62$ | \( 475 = 5^{2} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 3025 = 5^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 57475h
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 19a2, its twist by $-55$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{165}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.76.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.2.25946514000.1 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.109744.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.195139407375.3 | \(\Z/3\Z\) | not in database |
$6$ | 6.6.426769883929125.1 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.1397568571672092947015625.1 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.10987581136079552067002425211352000000000.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.6.114933979530012121326874089168333845160456000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | ord | add | ord | add | ord | ord | nonsplit | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 0,3 | 0 | - | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | 0,0 | 0 | - | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.