Show commands: SageMath
Rank
The elliptic curves in class 57222p have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 57222p do not have complex multiplication.Modular form 57222.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 57222p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 57222.q1 | 57222p1 | \([1, -1, 0, -3267, 71685]\) | \(1076890625/17424\) | \(62405397648\) | \([2]\) | \(49152\) | \(0.87097\) | \(\Gamma_0(N)\)-optimal |
| 57222.q2 | 57222p2 | \([1, -1, 0, -207, 198369]\) | \(-274625/4743684\) | \(-16989869509668\) | \([2]\) | \(98304\) | \(1.2175\) |