Properties

Label 57200.c
Number of curves $4$
Conductor $57200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 57200.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 57200.c do not have complex multiplication.

Modular form 57200.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - 4 q^{7} + q^{9} - q^{11} - q^{13} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 57200.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
57200.c1 57200bf4 \([0, 1, 0, -9362408, 11023115188]\) \(1418098748958579169/8307406250\) \(531674000000000000\) \([2]\) \(2654208\) \(2.5909\)  
57200.c2 57200bf3 \([0, 1, 0, -574408, 178723188]\) \(-327495950129089/26547449500\) \(-1699036768000000000\) \([2]\) \(1327104\) \(2.2443\)  
57200.c3 57200bf2 \([0, 1, 0, -166408, 499188]\) \(7962857630209/4606058600\) \(294787750400000000\) \([2]\) \(884736\) \(2.0416\)  
57200.c4 57200bf1 \([0, 1, 0, 41592, 83188]\) \(124326214271/71980480\) \(-4606750720000000\) \([2]\) \(442368\) \(1.6950\) \(\Gamma_0(N)\)-optimal