Properties

Label 57200.t
Number of curves $1$
Conductor $57200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 57200.t1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 57200.t do not have complex multiplication.

Modular form 57200.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2 q^{9} + q^{11} + q^{13} + q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 57200.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
57200.t1 57200bv1 \([0, -1, 0, -427929008, 8127821720512]\) \(-135412551115258010417641/367535633653760000000\) \(-23522280553840640000000000000\) \([]\) \(29417472\) \(4.1314\) \(\Gamma_0(N)\)-optimal