Properties

Label 5712.o
Number of curves $6$
Conductor $5712$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5712.o have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5712.o do not have complex multiplication.

Modular form 5712.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - q^{7} + q^{9} - 4 q^{11} - 2 q^{13} - 2 q^{15} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5712.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5712.o1 5712t5 \([0, 1, 0, -219497664, 1251605773620]\) \(285531136548675601769470657/17941034271597192\) \(73486476376462098432\) \([8]\) \(737280\) \(3.2723\)  
5712.o2 5712t3 \([0, 1, 0, -13744704, 19474747956]\) \(70108386184777836280897/552468975892674624\) \(2262912925256395259904\) \([2, 4]\) \(368640\) \(2.9257\)  
5712.o3 5712t6 \([0, 1, 0, -4681664, 44782380852]\) \(-2770540998624539614657/209924951154647363208\) \(-859852599929435599699968\) \([4]\) \(737280\) \(3.2723\)  
5712.o4 5712t2 \([0, 1, 0, -1451584, -169657804]\) \(82582985847542515777/44772582831427584\) \(183388499277527384064\) \([2, 2]\) \(184320\) \(2.5791\)  
5712.o5 5712t1 \([0, 1, 0, -1123904, -458409420]\) \(38331145780597164097/55468445663232\) \(227198753436598272\) \([2]\) \(92160\) \(2.2326\) \(\Gamma_0(N)\)-optimal
5712.o6 5712t4 \([0, 1, 0, 5598656, -1328717260]\) \(4738217997934888496063/2928751705237796928\) \(-11996166984654016217088\) \([2]\) \(368640\) \(2.9257\)