Properties

Label 56144r
Number of curves $2$
Conductor $56144$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 56144r have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1\)
\(29\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 56144r do not have complex multiplication.

Modular form 56144.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} - 4 q^{7} - 2 q^{9} - 5 q^{13} - 3 q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 56144r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
56144.e1 56144r1 \([0, -1, 0, -524, 7372]\) \(-35152/29\) \(-13152068864\) \([]\) \(43200\) \(0.63963\) \(\Gamma_0(N)\)-optimal
56144.e2 56144r2 \([0, -1, 0, 4316, -118468]\) \(19600688/24389\) \(-11060889914624\) \([]\) \(129600\) \(1.1889\)