Properties

Label 56144.d
Number of curves $1$
Conductor $56144$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 56144.d1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1\)
\(29\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 56144.d do not have complex multiplication.

Modular form 56144.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 2 q^{7} - 2 q^{9} + q^{13} - q^{15} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 56144.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
56144.d1 56144g1 \([0, -1, 0, -9720, -365792]\) \(-55990084/29\) \(-52608275456\) \([]\) \(43200\) \(1.0082\) \(\Gamma_0(N)\)-optimal