Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+1595x+25025\) | (homogenize, simplify) |
\(y^2z+xyz=x^3+1595xz^2+25025z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+2067093x+1161365094\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(20, 245\right)\) |
$\hat{h}(P)$ | ≈ | $0.12458451930403961660467318002$ |
Torsion generators
\( \left(-14, 7\right) \)
Integral points
\( \left(-14, 7\right) \), \( \left(-10, 95\right) \), \( \left(-10, -85\right) \), \( \left(2, 167\right) \), \( \left(2, -169\right) \), \( \left(20, 245\right) \), \( \left(20, -265\right) \), \( \left(50, 455\right) \), \( \left(50, -505\right) \), \( \left(122, 1367\right) \), \( \left(122, -1489\right) \), \( \left(130, 1495\right) \), \( \left(130, -1625\right) \), \( \left(470, 9995\right) \), \( \left(470, -10465\right) \), \( \left(530, 11975\right) \), \( \left(530, -12505\right) \), \( \left(139250, 51893255\right) \), \( \left(139250, -52032505\right) \)
Invariants
Conductor: | \( 5610 \) | = | $2 \cdot 3 \cdot 5 \cdot 11 \cdot 17$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-527357952000 $ | = | $-1 \cdot 2^{14} \cdot 3^{4} \cdot 5^{3} \cdot 11 \cdot 17^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{448733772344879}{527357952000} \) | = | $2^{-14} \cdot 3^{-4} \cdot 5^{-3} \cdot 7^{3} \cdot 11^{-1} \cdot 17^{-2} \cdot 10937^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.93554362886531609121131395016\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.93554362886531609121131395016\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9369964777030768\dots$ | |||
Szpiro ratio: | $3.9117885560779415\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $0.12458451930403961660467318002\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.61844096719589817103057291953\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 336 $ = $ ( 2 \cdot 7 )\cdot2^{2}\cdot3\cdot1\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 6.4720463317462097854537755746 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 6.472046332 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.618441 \cdot 0.124585 \cdot 336}{2^2} \approx 6.472046332$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 10752 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7480 = 2^{3} \cdot 5 \cdot 11 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 7041 & 4 \\ 6602 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 937 & 6546 \\ 6544 & 935 \end{array}\right),\left(\begin{array}{rr} 6802 & 1 \\ 4079 & 0 \end{array}\right),\left(\begin{array}{rr} 3741 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 2994 & 1 \\ 5983 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 7477 & 4 \\ 7476 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[7480])$ is a degree-$63531122688000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7480\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 55 = 5 \cdot 11 \) |
$3$ | split multiplicative | $4$ | \( 374 = 2 \cdot 11 \cdot 17 \) |
$5$ | split multiplicative | $6$ | \( 1122 = 2 \cdot 3 \cdot 11 \cdot 17 \) |
$7$ | good | $2$ | \( 2805 = 3 \cdot 5 \cdot 11 \cdot 17 \) |
$11$ | split multiplicative | $12$ | \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 5610.bk
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-55}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.1017280.3 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.3130447260160000.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.3465933379972272.4 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | split | ord | split | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | 4 | 2 | 1 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.