Properties

Label 5586.y
Number of curves $4$
Conductor $5586$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5586.y have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5586.y do not have complex multiplication.

Modular form 5586.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - 2 q^{5} + q^{6} + q^{8} + q^{9} - 2 q^{10} - 4 q^{11} + q^{12} - 2 q^{13} - 2 q^{15} + q^{16} + 6 q^{17} + q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5586.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5586.y1 5586bb3 \([1, 0, 0, -4290049, 3419763689]\) \(74220219816682217473/16416\) \(1931325984\) \([2]\) \(92160\) \(2.0744\)  
5586.y2 5586bb2 \([1, 0, 0, -268129, 53416649]\) \(18120364883707393/269485056\) \(31704647353344\) \([2, 2]\) \(46080\) \(1.7278\)  
5586.y3 5586bb4 \([1, 0, 0, -260289, 56689065]\) \(-16576888679672833/2216253521952\) \(-260740010604130848\) \([2]\) \(92160\) \(2.0744\)  
5586.y4 5586bb1 \([1, 0, 0, -17249, 782025]\) \(4824238966273/537919488\) \(63285689843712\) \([2]\) \(23040\) \(1.3812\) \(\Gamma_0(N)\)-optimal