Properties

Label 55506.y
Number of curves $4$
Conductor $55506$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 55506.y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55506.y do not have complex multiplication.

Modular form 55506.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - 2 q^{5} - q^{6} + q^{8} + q^{9} - 2 q^{10} - q^{11} - q^{12} + 2 q^{13} + 2 q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 55506.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55506.y1 55506y4 \([1, 1, 1, -3567119, 2591496317]\) \(8438952173768857/560166552\) \(333200128773759192\) \([2]\) \(1290240\) \(2.4182\)  
55506.y2 55506y3 \([1, 1, 1, -1212319, -483495715]\) \(331273336732057/22285827432\) \(13256129884335141672\) \([2]\) \(1290240\) \(2.4182\)  
55506.y3 55506y2 \([1, 1, 1, -236759, 35111981]\) \(2467489596697/527529024\) \(313786565979568704\) \([2, 2]\) \(645120\) \(2.0716\)  
55506.y4 55506y1 \([1, 1, 1, 32361, 3355821]\) \(6300872423/11759616\) \(-6994893842804736\) \([4]\) \(322560\) \(1.7250\) \(\Gamma_0(N)\)-optimal