Properties

Label 55506.r
Number of curves $1$
Conductor $55506$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 55506.r1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55506.r do not have complex multiplication.

Modular form 55506.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 5 q^{7} - q^{8} + q^{9} + q^{10} + q^{11} + q^{12} - 3 q^{13} - 5 q^{14} - q^{15} + q^{16} - 2 q^{17} - q^{18} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 55506.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55506.r1 55506p1 \([1, 0, 1, -236339, 44228528]\) \(-2454365649169/1609674\) \(-957471634407354\) \([]\) \(604800\) \(1.8142\) \(\Gamma_0(N)\)-optimal