Properties

Label 55506.e
Number of curves $4$
Conductor $55506$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 55506.e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55506.e do not have complex multiplication.

Modular form 55506.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - 4 q^{7} - q^{8} + q^{9} + q^{11} - q^{12} - 4 q^{13} + 4 q^{14} + q^{16} + 6 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 55506.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55506.e1 55506k4 \([1, 1, 0, -219415235, -1251030755973]\) \(1963975500122834382625/62995224591882\) \(37471028698884120880122\) \([2]\) \(13063680\) \(3.4264\)  
55506.e2 55506k3 \([1, 1, 0, -14303745, -17777411199]\) \(544107922591866625/85504662747108\) \(50860167456219763705668\) \([2]\) \(6531840\) \(3.0798\)  
55506.e3 55506k2 \([1, 1, 0, -4834085, 1324918149]\) \(21002873311842625/10875667967208\) \(6469100938347981657768\) \([2]\) \(4354560\) \(2.8771\)  
55506.e4 55506k1 \([1, 1, 0, -3858525, 2912934717]\) \(10680703423890625/11653595712\) \(6931830503003199552\) \([2]\) \(2177280\) \(2.5305\) \(\Gamma_0(N)\)-optimal