Properties

Label 54450fa
Number of curves $2$
Conductor $54450$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fa1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 54450fa have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 54450fa do not have complex multiplication.

Modular form 54450.2.a.fa

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{7} + q^{8} + 4 q^{13} + 2 q^{14} + q^{16} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 54450fa

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
54450.gm1 54450fa1 \([1, -1, 1, -2607980, -1581166353]\) \(129392980254539/3583180800\) \(54324324172800000000\) \([2]\) \(2064384\) \(2.5663\) \(\Gamma_0(N)\)-optimal
54450.gm2 54450fa2 \([1, -1, 1, 560020, -5180014353]\) \(1281177907381/765275040000\) \(-11602275094327500000000\) \([2]\) \(4128768\) \(2.9128\)