Properties

Label 54450.d
Number of curves $4$
Conductor $54450$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 54450.d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 54450.d do not have complex multiplication.

Modular form 54450.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 4 q^{7} - q^{8} - 6 q^{13} + 4 q^{14} + q^{16} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 54450.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
54450.d1 54450cq4 \([1, -1, 0, -9583767, -11417246109]\) \(4824238966273/66\) \(1331826343031250\) \([2]\) \(1966080\) \(2.4580\)  
54450.d2 54450cq2 \([1, -1, 0, -599517, -177949359]\) \(1180932193/4356\) \(87900538640062500\) \([2, 2]\) \(983040\) \(2.1114\)  
54450.d3 54450cq3 \([1, -1, 0, -327267, -340482609]\) \(-192100033/2371842\) \(-47861843289514031250\) \([2]\) \(1966080\) \(2.4580\)  
54450.d4 54450cq1 \([1, -1, 0, -55017, 102141]\) \(912673/528\) \(10654610744250000\) \([2]\) \(491520\) \(1.7649\) \(\Gamma_0(N)\)-optimal