Properties

Label 54208.cq
Number of curves $2$
Conductor $54208$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 54208.cq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 54208.cq do not have complex multiplication.

Modular form 54208.2.a.cq

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 2 q^{5} + q^{7} + q^{9} - 4 q^{15} - 4 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 54208.cq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
54208.cq1 54208cy2 \([0, -1, 0, -11031489, 9895057889]\) \(1278763167594532/375974556419\) \(43651030131946295066624\) \([2]\) \(3686400\) \(3.0500\)  
54208.cq2 54208cy1 \([0, -1, 0, 1852591, 1028234033]\) \(24226243449392/29774625727\) \(-864216116880176693248\) \([2]\) \(1843200\) \(2.7035\) \(\Gamma_0(N)\)-optimal